A Review of Treatment Technologies for Textile Industry Effluents

Authors

  • Sonia Abid Bhatti Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan Author
  • Mohammad Haroon Hassani Urology Department, Kabul University of Medical Sciences "Abu Ali Ibn Sina", Kabul, Afghanistan Author

DOI:

https://doi.org/10.64229/8qen6k42

Keywords:

Textile industry wastewater, AOP, Fenton process, Photocatalytic, Ozone-based methods

Abstract

The textile industry utilizes a wide spectrum of chemicals and auxiliaries, which cause serious repercussions with regard to the environment. Wastewater generated and released from textile processing units is a potential cause of environmental pollution and health hazards because of the presence of toxic contaminants besides organic matter. One of these primary contaminants is color contributed by the dyes used in the dyeing process. There is a great focus on reusing the effluent water in the dyeing process. Hence, it is crucial to develop an economically viable treatment system for the treatment of wastewater that can meet the stringent effluent quality standards. This article presents various treatment technologies in detail for treating the textile industry effluents which includes the Physico-chemical treatment (Advanced oxidation process (AOP), Fenton process, Photocatalytic, Ozone based methods and Electrochemical AOP), the Biological treatment process (Microbial culture based, Mechanized treatment systems including attached and suspended growth processes) and finally the Hybrid treatment technologies (Anaerobic-Anoxic-Aerobic Membrane Bioreactor Process, Hybrid Anaerobic Sequencing Batch Reactor-Aerobic Process, Hybrid Forward Osmosis-Membrane Distillation (FO-MD) Process, AOP plus Activated Sludge Treatment and Biological followed by physicochemical processes). This review paper also presents the future research prospects and potential technologies that have been recommended for smooth and better process control.

References

[1]Bhatti SA, Qiao XC. Theoretical to experimental investigation: A waste utilization technique for iron recovery. Separation and Purification Technology, 2025, 363, 132054. DOI: 10.1016/j.seppur.2025.132054

[2]Bhatti SA, Qiao XC. Synergistic effect of carbothermal reduction and sodium salts leaching in the process of iron recovery from copper slag. Process Safety and Environmental Protection, 2025, 193, 170-182. DOI: 10.1016/j.psep.2024.11.031

[3]Bhatti SA, Qiao XC. A novel approach for recovery of iron from copper slag using calcium salts. Environemntal Science and Pollution Research, 2024, 1-15. DOI: 10.1007/s11356-024-34128-6

[4]Yusuf M, Kiran S. Biomedical textiles: Introduction and applications. 2025: CRC Press. DOI: 10.1201/9781003651697

[5]Sathya K, Nagarajan K, Carlin Geor Malar G, Rajalakshmi S, Raja Lakshmi P. A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Applied Water Science, 2022, 12(4), 70. DOI: 10.1007/s13201-022-01594-7

[6]Pundir A, Thakur MS, Radha Goel B, Prakash S, Kumari N, Kumar M. Innovations in textile wastewater management: a review of zero liquid discharge technology. Environemntal Science and Pollution Research, 2024, 31(9), 12597-12616. DOI: 10.1007/s11356-024-31827-y

[7]Alsukaibi AK. Various approaches for the detoxification of toxic dyes in wastewater. Processes, 2022, 10(10), 1968. DOI: 10.3390/pr10101968

[8]Amutha K. Natural dyes and pigments for sustainable coloration of textiles, in sustainable coloration of textiles. Springer, 2025, 147-170. DOI: 10.1007/978-3-031-91217-7_8

[9]Kallawar GA, Bhanvase BA. A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. Environemntal Science and Pollution Research, 2024, 31(2), 1748-1789. DOI: 10.1007/s11356-023-31175-3

[10]Xu Z, Zhang C, Wang F, Yu J, Yang G, Surmenev RA, Ding B. Smart textiles for personalized sports and healthcare. Nano-Micro Letters, 2025, 17(1), 1-39. DOI: 10.1007/s40820-025-01749-6

[11]Fasim A, Vaishnavi KL, Maheshwari R, Sriprada G, Veena SM, More SS. Advances in microbial enzymes in processing and applications in textiles, in sustainable finishing techniques in textiles. Springer, 2025, 91-114. DOI: 10.1007/978-981-96-4860-3_6

[12]Sahoo SK, Dash BP, Khandual A. Sustainable Yarn Sizing Process, in Advancements in Textile Finishing: Techniques, Technologies, and Trends. Springer, 2025, 47-74. DOI: 10.1007/978-981-96-6385-9_3

[13]Dutta P, Rabbi M, Sufian M, Mahjebin S. Effects of textile dyeing effluent on the environment and its treatment: A review. Engineering and Applied Science Letters (EASL), 2022, 5, 1-17. DOI: 10.30538/psrp-easl2022.0080

[14]Sarkodie B, Feng Q, Xu C, Xu Z. Desizability and biodegradability of textile warp sizing materials and their mechanism: a review. Journal of Polymers and the Environment, 2023, 31(8), 3317-3337. DOI:10.1007/s10924-023-02801-5

[15]Raafi SM, Arju SN, Asaduzzaman M, Khan HH, Rokonuzzaman M. Eco-friendly scouring of cotton knit fabrics with enzyme and soapnut: An alternative to conventional NaOH and synthetic surfactant based scouring. Heliyon, 2023, 9(4), e15236. DOI:10.1016/j.heliyon.2023.e15236

[16]Gupta S. The antibacterial properties of plant-derived natural colorants: A review. Colorants, 2025, 4(2), 16. DOI: 10.3390/colorants4020016

[17]Karmakar P, Layek M, Kundu S, Karmakar K, Mitra M, Mandal U, et al. Homogeneous oxidation for bleaching processes, in homogeneous oxidation reactions. Elsevier, 2025, 83-106. DOI: 10.1016/B978-0-443-15620-5.00004-4

[18]Ke Y, Wang Y, Xu W. The influence of NaOH/urea treatment on the transfer law of water in cotton fabric. Industrial Crops and Products, 2024, 218, 118961. DOI: 10.1016/j.indcrop.2024.118961

[19]Berradi M, Berradi O, El Rhayam Y, Rissouli L, El-Aouni N, El Yacoubi A, et al. Mechanical and chemical processes of textile finishing industries, in advancements in textile finishing: techniques, technologies, and trends. Springer, 2025, 27-46. DOI: 10.1007/978-981-96-6385-9_2

[20]Sahoo SK, Sharma S. Assessment of sustainable textile finishes, in sustainable finishing techniques in textiles. Springer, 2025, 259-281. DOI: 10.1007/978-981-96-4860-3_13

[21]Dejene BK, Abtew MA, Pawlos M. Eco-friendly flame retardant and antibacterial finishing solutions for cotton textiles: A comprehensive review. Journal of Industrial Textiles, 2025, 55, 15280837251325779. DOI: 10.1177/15280837251325779

[22]Punzi M. Treatment of textile wastewater by combining biological processes and advanced oxidation. 2015: Department of Biotechnology, Lund University. https://lucris.lub.lu.se/ws/files/6076976/5367871.pdf (accessed on 01-09-2025)

[23]Kocabas AM, Yukseler H, Dilek FB, Yetis U. Adoption of European Union's IPPC Directive to a textile mill: Analysis of water and energy consumption. Journal of environmental management, 2009, 91(1), 102-113. DOI: 10.1016/j.jenvman.2009.07.012

[24]Wang Z, Xue M, Huang K, Liu Z. Textile dyeing wastewater treatment, in Advances in treating textile effluent. 2011, 5, 91-116. InTech. DOI: 10.5772/22670

[25]Ghaly, AE, Ananthashankar R, Alhattab M, Ramakrishnan VV. Production, characterization and treatment of textile effluents: a critical review. Journal of Chemical Engineering and Process Technology, 2014. 5(1), 1-18. DOI: 10.4172/2157-7048.1000182

[26]Guo Z, Zhu D, Pan J, Zhang F. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. Journal of Cleaner Production, 2018, 187, 910-922. DOI: 10.1016/j.jclepro.2018.03.264

[27]Seneviratne M, Wastewater Treatment Technologies- The Roadmap To Zero Programme. 2018. https://uploads-ssl.webflow.com/5c4065f2d6b53e08a1b03de7/5db6f50d7a90f4e4a47725cf_Wastewater_Treatment_Technologies_for_the_Textile_Industry-FINAL.pdf (accessed on 01-09-2025)

[28]Zaharia C, Suteu D, Muresan A, Muresan R. Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environmental Engineering and Management Journal, 2009, 8(6), 1359-1369. DOI: 10.30638/eemj.2009.199

[29]Carmen Z and S Daniela. Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. in organic pollutants ten years after the Stockholm convention-environmental and analytical update. 2012. InTech. DOI: 10.5772/32373

[30]Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 2016, 182, 351-366. DOI: 10.1016/j.jenvman.2016.07.090

[31]Bafana A, Devi SS, Chakrabarti T. Azo dyes: past, present and the future. Environmental Reviews, 2011, 19(NA), 350-371. DOI: 10.1139/a11-018

[32]Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environemntal Science and Pollution Research, 2021, 28(8), 9050-9066. DOI: 10.1007/s11356-021-12395-x

[33]Pandis PK, Kalogirou C, Kanellou E, Vaitsis C, Savvidou MG, Sourkouni G, et al., Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. ChemEngineering, 2022, 6(1), 8. DOI: 10.3390/chemengineering6010008

[34]Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. Environemntal Science and Pollution Research, 2023, 30(10), 25477-25505. DOI: 10.1007/s11356-022-19435-0

[35]Mahmoodi M, Pishbin E. Ozone-based advanced oxidation processes in water treatment: Recent advances, challenges, and perspective. Environemntal Science and Pollution Research, 2025, 32(7), 3531-3570. DOI: 10.1007/s11356-024-35835-w

[36]Patil AD, Raut P. Treatment of textile wastewater by Fenton’s process as a advanced oxidation process. Journal of Environmental Science, Toxicology and Food Technology, 2014, 8, 29-32. DOI: 10.9790/2402-081032932

[37]Sirés I, Brillas E, Oturan MA, Rodrigo MA. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 2014, 21(14), 8336-8367. DOI: 10.1007/s11356-014-2783-1

[38]Hussein FH, Abass TA. Photocatalytic treatment of textile industrial wastewater. International Journal of Chemical Sciences, 2010, 8(3), 1353-1364. https://www.researchgate.net/publication/234100704_Photocatalytic_treatment_of_textile_industrial_wastewater (accessed on 01-09-2025)

[39]Mills A, Hunte SL. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108(1), 1-35. DOI: 10.1016/S1010-6030(97)00118-4

[40]Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1-2), 33-177. DOI: 10.1016/j.progsolidstchem.2004.08.001

[41]Sleiman M, Vildozo D, Ferronato C, Chovelon J-M. Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach. Applied Catalysis B: Environmental, 2007, 77(1-2), 1-11. DOI: 10.1016/j.apcatb.2007.06.015

[42]Chakrabarti S, Dutta BK. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 2004, 112(3), 269-278. DOI: 10.1016/j.jhazmat.2004.05.013

[43]Silva CG, Wang W, Faria JL. Photocatalytic and photochemical degradation of mono-, di-and tri-azo dyes in aqueous solution under UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181(2-3), 314-324. DOI: 10.1016/j.jphotochem.2005.12.013

[44]Reddy MP, Venugopal A, Subrahmanyam M. Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension. Applied Catalysis B: Environmental, 2007, 69(3-4), 164-170. DOI: 10.1016/j.apcatb.2006.07.003

[45]Su C, Hong BY, Tseng CM. Sol–gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 2004, 96(3), 119-126. DOI: 10.1016/j.cattod.2004.06.132

[46]Saquib M, Tariq MA, Faisal M, Muneer M. Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination, 2008, 219(1-3), 301-311. DOI: 10.1016/j.desal.2007.06.006

[47]Sun J, Wang X, Sun J, Sun R, Sun S, Qiao L. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn (IV)/TiO2/AC photocatalyst. Journal of Molecular Catalysis A: Chemical, 2006, 260(1-2), 241-246. DOI: 10.1016/j.molcata.2006.07.033

[48]Stylidi M, Kondarides DI, Verykios XE. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 2004, 47(3), 189-201. DOI: 10.1016/j.apcatb.2003.09.014

[49]Afanga H, Zazou H, Titchou FE, Rakhila Y, Akbour RA, Elmchaouri A, et al. Integrated electrochemical processes for textile industry wastewater treatment: system performances and sludge settling characteristics. Sustainable Environment Research, 2020, 30(1), 2. DOI: 10.1186/s42834-019-0043-2

[50]Yang S, Wang P, Yang X, Shan L, Zhang W, Shao X, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials, 2010, 179(1-3), 552-558. DOI: 10.1016/j.jhazmat.2010.03.039

[51]Chang SH, Chuang SH, Li HC, Liang HH, Huang LC. Comparative study on the degradation of IC Remazol Brilliant Blue R and IC Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. Journal of Hazardous Materials, 2009, 166(2-3), 1279-1288. DOI: 10.1016/j.jhazmat.2008.12.042

[52]Chu L, Xing XH, Yu AF, Zhou YN. Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere, 2007, 68(10), 1854-1860. DOI: 10.1016/j.chemosphere.2007.03.014

[53]Zhang X, Dong W, Yang W. Decolorization efficiency and kinetics of typical reactive azo dye RR2 in the homogeneous Fe (II) catalyzed ozonation process. Chemical engineering journal, 2013, 233, 14-23. DOI: 10.1016/j.cej.2013.07.098

[54]Neelavannan MG, Basha CA. Electrochemical-assisted photocatalytic degradation of textile washwater. Separation and Purification Technology, 2008, 61(2), 168-174. DOI: 10.1016/j.seppur.2007.10.009

[55]Krishnakumar B, Swaminathan M. Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 81(1), 739-744. DOI: 10.1016/j.saa.2011.07.019

[56]Özcan A, Oturan MA, Oturan N, Sahin Y. Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent. Journal of Hazardous Materials, 2009, 163(2-3), 1213-1220. DOI: 10.1016/j.jhazmat.2008.07.088

[57]Peralta-Hernández JM, Meas-Vong Y, Rodrı´guez FJ, Chapman TW, Maldonado MI, Godı´nez LA. Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decolorization and destruction of Orange II azo dye in dilute solution. Dyes and Pigments, 2008, 76(3), 656-662. DOI: 10.1016/j.dyepig.2007.01.001

[58]Ruiz EJ, Arias C, Brillas E, Hernandez-Ramírez A, Peralta-Hernández JM. Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere, 2011, 82(4), 495-501. DOI: 10.1016/j.chemosphere.2010.11.013

[59]Ince NH, Tezcanlı́ G. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes and Pigments, 2001, 49(3), 145-153. DOI: 10.1016/S0143-7208(01)00019-5

[60]He Z, Song S, Xia M, Qiu J, Ying H, Lü B, et al. Mineralization of CI Reactive Yellow 84 in aqueous solution by sonolytic ozonation. Chemosphere, 2007, 69(2), 191-199. DOI: 10.1016/j.chemosphere.2007.04.045

[61]Destaillats H, Colussi AJ, Joseph JM, Hoffmann MR. Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. The Journal of Physical Chemistry A, 2000, 104(39), 8930-8935. DOI: 10.1021/jp001415+

[62]Song S, Xu L, He Z, Chen J, Xiao X, Yan B. Mechanism of the photocatalytic degradation of CI Reactive Black 5 at pH 12.0 using SrTiO3/CeO2 as the catalyst. Environmental Science & Technology, 2007, 41(16), 5846-5853. DOI: 10.1021/es070224i

[63]He Z, Lin L, Song S, Xia M, Xu L, Ying H, et al., Mineralization of CI Reactive Blue 19 by ozonation combined with sonolysis: Performance optimization and degradation mechanism. Separation and Purification Technology, 2008, 62(2), 376-381. DOI: 10.1016/j.seppur.2008.02.005

[64]Hussein A, Scholz M. Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands. Environmental Science and Pollution Research, 2018, 25(7), 6870-6889. DOI: 10.1007/s11356-017-0992-0

[65]Guenfoud F, Mokhtari M, Akrout H. Electrochemical degradation of malachite green with BDD electrodes: Effect of electrochemical parameters. Diamond and Related Materials, 2014, 46, 8-14. DOI: 10.1016/j.diamond.2014.04.003

[66]Cano-Rodríguez CT, Roa-Morales G, Amaya-Chávez A, Valdés-Arias RA, Barrera-Díaz CE, Balderas-Hernández P. Tolerance of Myriophyllum aquaticum to exposure of industrial wastewater pretreatment with electrocoagulation and their efficiency in the removal of pollutants. Journal of Environmental Biology, 2014, 35(1), 127. https://pubmed.ncbi.nlm.nih.gov/24579528/ (accessed on 05-09-2025)

[67]Eslami A, Moradi M, Ghanbari F, Mehdipour F. Decolorization and COD removal from real textile wastewater by chemical and electrochemical Fenton processes: a comparative study. Journal of Environmental Health Science and Engineering, 2013, 11(1), 31. DOI: 10.1186/2052-336X-11-31

[68]Tsantaki E, Velegraki T, Katsaounis A, Mantzavinos D. Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode. Journal of Hazardous Materials, 2012, 207, 91-96. DOI: 10.1016/j.jhazmat.2011.03.107

[69]Martínez-Huitle CA, Dos santos EV, Araújo DM, Panizza M. Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 2012, 674, 103-107. DOI: 10.1016/j.jelechem.2012.02.005

[70]Basha CA, Selvakumar KV, Prabhu HJ, Sivashanmugam P, Lee CW. Degradation studies for textile reactive dye by combined electrochemical, microbial and photocatalytic methods. Separation and Purification Technology, 2011, 79(3), 303-309. DOI: 10.1016/j.seppur.2011.02.036

[71]Kariyajjanavar P, Jogttappa N, Nayaka YA. Studies on degradation of reactive textile dyes solution by electrochemical method. Journal of Hazardous Materials, 2011, 190(1-3), 952-961. DOI: 10.1016/j.jhazmat.2011.04.032

[72]Zhang Y, Shaad K, Vollmer D, Ma C. Treatment of textile wastewater using advanced oxidation processes—a critical review. Water, 2021, 13(24), 3515. DOI: 10.3390/w13243515

[73]Khan Z, Jain KR, Soni A, Madamvar D. Microaerophilic degradation of sulphonated azo dye – Reactive Red 195 by bacterial consortium AR1 through co-metabolism. International Biodeterioration & Biodegradation, 2014, 94, 167-175. DOI: 10.1016/j.ibiod.2014.07.002

[74]Zhang Q, Xie X, Liu Y, Zheng X, Wang Y, Cong J. Fructose as an additional co-metabolite promotes refractory dye degradation: Performance and mechanism. Bioresource Technology, 2019, 280, 430-440. DOI: 10.1016/j.biortech.2019.02.046

[75]Chen Y, Yu B, Lin J, Naidu R, Chen Z. Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal, 2016, 289, 463-470. DOI: 10.1016/j.cej.2016.01.010

[76]Ceretta MB, Durruty I, Orozco AMF, Gonzalez Jf, Wolski EA. Biodegradation of textile wastewater: enhancement of biodegradability via the addition of co-substrates followed by phytotoxicity analysis of the effluent. Water Science and Technology, 2018, 2017(2), 516-526. DOI: 10.2166/wst.2018.179

[77]Ceretta MB, Vieira Y, Wolski EA, Foletto EL, Silvestri S. Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. Journal of Water Process Engineering, 2020, 35, 101230. DOI:10.1016/j.jwpe.2020.101230

[78]Chittal V, Gracias M, Anu A, Saha P, Rao KB. Biodecolorization and Biodegradation of Azo Dye Reactive Orange-16 by Marine Nocardiopsis sp. Iranian Journal of Biotechnology, 2019, 17(3), e1551. DOI: 10.29252/ijb.1551

[79]Mishra S, Mohanty P, Maiti A. Bacterial mediated bio-decolourization of wastewater containing mixed reactive dyes using jack-fruit seed as co-substrate: Process optimization. Journal of Cleaner Production, 2019, 235, 21-33. DOI: 10.1016/j.jclepro.2019.06.328

[80]Kalyani D, Telke A, Dhanve RS, Jadhav JP. Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. Journal of Hazardous Materials, 2009, 163(2), 735-742. DOI: 10.1016/j.jhazmat.2008.07.020

[81]Isik Z, Arikan EB, Bouras HD, Dizge N. Bioactive ultrafiltration membrane manufactured from Aspergillus carbonarius M333 filamentous fungi for treatment of real textile wastewater. Bioresource Technology Reports, 2019, 5, 212-219. DOI: 10.1016/j.biteb.2019.01.020

[82]Srikanlayanukul M, Khanongnuch C, Lumyong S. Decolorization of textile wastewater by immobilized Coriolus versicolor RC3 in repeated-batch system with the effect of sugar addition. CMU. Journal, 2006, 5(3), 301. https://cmuj.cmu.ac.th/uploads/journal_list_index/780778505.pdf (accessed on 10-09-2025)

[83]Selvakumar S, Manivasagan R, Chinnappan K. Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. 3 Biotech, 2013, 3(1), 71-79. DOI: 10.1007/s13205-012-0073-5

[84]Jha S, Mishra BK. An overview of deploying different treatment processes with membrane bioreactor for enhanced treatment of wastewaters: synergistic performances and reduced fouling of membrane. Environmental Science and Pollution Research, 2024, 31(55), 63603-63634. DOI: 10.1007/s11356-024-35459-0

[85]Feuzer-Matos AJ, Testolin RC, Pimentel-Almeida W, Radetski-Silva R, Deomar-Simões MJ, Poyer-Radetski L, et al. Treatment of wastewater containing new and non-biodegradable textile dyes: efficacy of combined advanced oxidation and adsorption processes. Water Air and Soil Pollution, 2022, 233(7), 273. DOI: 10.1007/s11270-022-05751-1

[86]Elazhar M, Bouchabchoub A, Elazhar F, Elmidaoui A, Taky M. Influence of volatile fatty acids/alkalinity ratio on methane production during mesophilic anaerobic digestion: stability, efficiency and optimization. Desalination and Water Treatment, 2022, 257, 142-149. DOI: 10.5004/dwt.2022.28580

[87]Liu Z, Ma Z, Qian B, Chan AY, Wang X, Liu Y, et al., A facile and scalable method of fabrication of large-area ultrathin graphene oxide nanofiltration membrane. ACS Nano, 2021, 15(9), 15294-15305. DOI: 10.1021/acsnano.1c06155

[88]Alessia A, Giulia M, Marina P, Ayedi K, Valentina I. Environmental sustainability assessment of different strategies for the treatment of wastewater from textile industry. Journal of Environmental Chemical Engineering, 2025, 118761. DOI: 10.1016/j.jece.2025.118761

[89]Wu X, Ma S, Ng D, Acharya D, Fan L, Xie Z. Enhancing water recovery through integrated graphene oxide-modified forward osmosis and membrane distillation for real textile wastewater treatment. Journal of Environmental Chemical Engineering, 2024, 12(3), 112512. DOI: 10.1016/j.jece.2024.112512

[90]Dehshiri SSH, Firoozabadi B. Solar to power and hydrogen production, storage and utilization in textile industry: A feasibility analysis. Applied Energy, 2024, 362, 122956. DOI: 10.1016/j.apenergy.2024.122956

[91]Silva JA. Advanced Oxidation Process in the Sustainable Treatment of Refractory Wastewater: A Systematic Literature Review. Sustainability (2071-1050), 2025, 17(8). DOI: 10.3390/su17083439

[92]Zeng Q, An W, Peng D, Liu Q, Zhang X, Ge H, et al. Research progress in photocatalytic-coupled microbial electrochemical technology in wastewater treatment. Catalysts, 2025, 15(1), 81. DOI: 10.3390/catal15010081

[93]Ali H, Ghaly MA, Hussieny NFE, Kreem MA. Novel collector design and optimized photo-fenton model for sustainable industry textile wastewater treatment. Scientific Reports, 2024, 14(1), 8573. DOI: 10.1038/s41598-024-58610-w

[94]El-Sheekh M, El-Kassas HY, Ali SS. Microalgae-based bioremediation of refractory pollutants: an approach towards environmental sustainability. Microbial Cell Factories, 2025, 24(1), 19. DOI: 10.1186/s12934-024-02638-0

[95]Noor A, Kutty SRM, Isa MH, Farooqi IH, Affam AC, Birniwa AH, et al., Treatment innovation using biological methods in combination with physical treatment methods, in the treatment of pharmaceutical wastewater. Elsevier, 2023, 217-245. DOI: 10.1016/B978-0-323-99160-5.00010-2

[96]Abonyi MN, Obi CC, Nwabanne JT, Aniagor CO. Emerging and ecofriendly biological methods for agricultural wastewater treatment. Environmental Systems Research, 2024, 13(1), 45. DOI: 10.1186/s40068-024-00373-4

[97]Abdoli S, Asgari Lajayer B, Dehghanian Z, Bagheri N, Vafaei AH, Chamani M, et al. A review of the efficiency of phosphorus removal and recovery from wastewater by physicochemical and biological processes: Challenges and opportunities. Water, 2024, 16(17), 2507. DOI: 10.3390/w16172507

[98]Minde P, Patil J, Patil M, Singh N. Exploring sustainable and cost-effective wastewater management solutions for urban India through life cycle cost analysis: a case study approach. Water Air and Soil Pollution, 2024, 235(6), 335. DOI: 10.1007/s11270-024-07123-3

[99]Ischia G, Berge ND, Bae S, Marzban N, Román S, Farru G, et al. Advances in research and technology of hydrothermal carbonization: achievements and future directions. Agronomy, 2024, 14(5), 955. DOI: 10.3390/agronomy14050955

[100]Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. Journal of Hazardous Materials, 2024, 469, 133906. DOI: 10.1016/j.jhazmat.2024.133906

[101]Chettri D, Verma AK, Verma AK. Bioaugmentation: an approach to biological treatment of pollutants. Biodegradation, 2024, 35(2), 117-135. DOI: 10.1007/s10532-023-10050-5

[102]Fan W, Xiao Y, Cao B, Shi J, Wu H, Shu S. Comparison of bioaugmentation and biostimulation approaches for biocementation in soil column experiments. Journal of Building Engineering, 2024, 82, 108335. DOI: 10.1016/j.jobe.2023.108335

[103]Kumar R, Kaushal S, Verma N, Kumar P, Thakur N, Kumar A, et al. Nano bioaugmentation for textile dye remediation: A sustainable approach for health and environment management. Journal of Molecular Liquids, 2024, 415, 126254. DOI: 10.1016/j.molliq.2024.126254

[104]Rendón-Castrillón L, Carmona MER, Ocampo-Lopez C, González-López F, Cuartas-Uribe B, Mendoza-Roca JA. Efficient bioremediation of indigo-dye contaminated textile wastewater using native microorganisms and combined bioaugmentation-biostimulation techniques. Chemosphere, 2024, 353, 141538. DOI: 10.1016/j.chemosphere.2024.141538

[105]Ghzala Q, Javedb T, Zghairc AN, Haiderd MN, Abede MJ, Jasimf LS, et al. Sustainable dye wastewater treatment: A review of effective strategies and future directions. Physical Chemistry Research, 2025, 13(3), 479-509. DOI: 10.22036/pcr.2025.501339.2633

[106]Raj R, Tripathi A, Das S, Ghangrekar MM. Removal of caffeine from wastewater using electrochemical advanced oxidation process: A mini review. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100129. DOI: 10.1016/j.cscee.2021.100129

Downloads

Published

2025-10-11

Issue

Section

Articles